
PO Box 35-715 • Browns Bay • Auckland 1330 • New Zealand
Phone +64 (21) 736 378, +64 (9) 478 5779 • Fax +64 (9) 479 4750

www.digitaloptics.co.nz

V++ Video Driver Writer's Guide
Digital Optics

V++ Video Driver Writer's Guide
Copyright © 1990 – 2002, Digital Optics Limited.
Second Edition (Online v2.3)
Produced in New Zealand.

All rights reserved. No part of this manual may be reproduced, in any form or by any means,
without the prior written permission of the publisher.

This is the online edition of the V++ Video Driver Writer's Guide and is formatted for US Letter
paper.

V™, V++™, V for Windows™, VPascal™, Digital Optics™, CameraBar™, VideoBar™ and “Intelligent
Image Display”™ are trademarks of Digital Optics Limited.

PVCAM® is a registered trademark of Photometrics Ltd, a division of Roper Scientific Inc.

Borland®, Delphi™, and C++Builder™ are trademarks or registered trademarks of Borland
Corporation.

Microsoft®, Windows™, and Visual Basic® are trademarks or registered trademarks of Microsoft
Corporation.

All brand and product names mentioned in this manual are used for identification purposes only and
may be trademarks or registered trademarks of their respective holders.

V++ is subject to continuous improvement therefore Digital Optics reserves the right to modify its
specifications at any time and without notice. This manual is intended to be a fair representation of
certain features and capabilities of V++ but discrepancies may occur from time to time as
development progresses. Nothing in this document shall be construed as a commitment by Digital
Optics to implement or support any particular feature.

Table of Contents

1. Introduction ...5
Before You Start... 5
Terminology... 5
Support... 6

2. Driver Overview ..7
Concepts ... 7
Supporting Multiple Devices ... 8
Programming Languages ... 8
Data Types .. 8
Hot Loading ... 8
Memory Layout .. 9
Registry Settings .. 9
Loading and Installing a Driver ... 9
Modifications.. 10

3. Function Categories ...11

4. Basic Functions ...15

5. System Functions ..18

6. Driver Information...19

7. Performance Information..21

8. Region of Interest..23

9. Asynchronous Capture ...25

10. Frame Buffer Functions...27

11. Input Channels..29

12. Continuous Capture ...30

13. Integration ...31

14. Exposure Modes ..32

15. Sequences..34

16. Digital I/O Lines ..36

17. User Interface Support ...37

18. Command Interface ...40

Appendix A: Focus Issues...41

V++ Video Driver Writer's Guide 3

Appendix B: V++ Registry Settings ...42

Index ..43

Chapter 1

1. Introduction

V++ incorporates an industry leading video architecture which provides for the easy integration of
almost any kind of video capture hardware, including frame grabbers and digital cameras. This
guide is the official programmer's documentation for the V++ video architecture and describes how
you can write drivers to integrate your own equipment into the system.

You can choose your own level of complexity when you write a video driver. There are 8 mandatory
functions that you must include and you can choose to implement more, up to a total of 47, to
provide better support for your hardware.

When V++ loads your driver it automatically determines what level of support it provides and
makes the best use it can of whatever functions are available.

Some of the important features of the video architecture for developers are:

•

•

•

•

•

•

•

•

Built-in GUI support for all of the most common video capture operations

VPascal language support for all video operations

Hot loading and unloading of drivers (no restart required)

Simultaneous access to multiple devices

Ability to call a custom configuration dialog for each device

Ability to add a custom control interface to your driver

Ability to send custom commands direct to your driver

Most driver functions are optional – only 8 are required for a minimal driver

Your driver is automatically integrated into the V++ interface and incorporated in features like the
VideoBar™ and the multi-device tabbed dialog boxes.

Before You Start
This guide assumes that you are broadly familiar with V++ and with general concepts of digital
imaging. For information about how to use video devices as an end-user, see the V++ online help.
You will need to be familiar with the Video dialog boxes in order to test the driver. To write a V++
video driver, you will be required to write a standard Windows DLL with a programming language of
your choice.

Terminology
The following are definitions of important terms used throughout this guide:

Driver
A video driver is a Windows DLL, written according to this specification, which exports a set of
functions to support one or more individual video devices. It is not a device driver in the Windows
sense of the term and devices will usually still need their proprietary drivers to be installed. Video
drivers often simply act as an intermediate layer between V++ and a hardware API library.

Device
A video device is a single piece of equipment that captures video images – it is most likely to be a
video frame grabber or a digital camera. It may use any of a number of methods to transfer images
to the driver, including ISA bus, PCI bus, serial, parallel, USB, Firewire and others. As far as V++ is
concerned, the hardware technology is completely encapsulated by the driver.

V++ Video Driver Writer's Guide 5

Chapter 1 – Introduction

Hot Loading
V++ loads and unloads video drivers at runtime without having to shutdown and restart. When a
driver loads or unloads, all user interface elements (the VideoBar™, tabbed dialogs etc)
automatically update to accommodate the changes. This flexible process is referred to as "hot
loading".

Support
If you have questions about implementing a V++ video driver that are not addressed by this
document then please contact the Digital Optics technical support department at the following
address:

video@digitaloptics.co.nz

For general information about V++ and downloads (including free video drivers) please refer to our
web site:

http://www.digitaloptics.co.nz

V++ Video Driver Writer's Guide 6

mailto:video@digitaloptics.co.nz
http://www.digitaloptics.co.nz/

Chapter 2

2. Driver Overview

Concepts
V++ supports a variety of function categories for video operations. Each of these requires a certain
set of functions to be present in the video driver and will only be available if the driver supports the
necessary subsets of functions.

Basic Operations
As a minimum, a video driver must implement functions to perform the following tasks:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Initialization and shut down

Return the name of the device it controls

Provide status and error codes

Get the dimensions and bit depth of the video frame

Perform a frame capture operation

Copy a captured video frame into host memory

These tasks are performed by the 8 mandatory functions that your driver is obliged to export.

Additional Operations
The driver may also implement additional functions to perform various other tasks, depending on
the capabilities of the devices it controls. The following types of operations are supported by the
V++ video driver model:

Control and selection of multiple devices

Displaying a custom configuration dialog box

Asynchronous video capture

Frame buffer direct memory access

Region of interest capture

Continuous frame capture

Controlling multiple video input channels

Control of integrating cameras

Externally triggered frame capture

Hardware supported sequence acquisition

Providing a custom operational interface to a device

Returning custom driver error messages

Returning a driver name, provider and version number

Returning hardware and driver performance information

Executing commands sent directly to the driver

Any particular operation will automatically appear in V++ provided sufficient supporting functions
have been exported by the video driver.

V++ Video Driver Writer's Guide 7

Chapter 2 – Driver Overview

Supporting Multiple Devices
The video architecture inherently supports multi-device and multi-driver operation. This means that
V++ can load multiple video drivers simultaneously (each of which supports a different device) and
also that any one driver may support more than one device.

If your driver supports multiple devices then it must export some additional functions that enable
V++ to determine what devices are available and to select them individually. Once a device is
selected it remains so until another device is selected. Devices are referred to by a zero-based
index number.

The driver must apply all video functions to its currently selected device.

Programming Languages
Video drivers can be written in any programming language that supports Windows 32-bit DLLs and
the standard calling model. The reference chapters in this guide provide sample declarations in both
Pascal and C.

Calling Conventions
All exported functions must be compiled with standard calling conventions – in many languages this
is referred to as "stdcall". V++ imports functions by name so you must export the function names
exactly as shown in this documentation and preserve case. DO NOT use C++ name mangling. Refer
to your compiler's documentation if you are unsure about how to set the calling model.

Exporting Functions
V++ determines what the capabilities of your driver are by examining which functions the DLL has
exported. To be recognized as a V++ video driver it must at least export the 8 mandatory functions
described in chapter 4. All other functions are optional and the ones you choose to export will
determine how much support is available for the video device in V++.

Data Types
The following data types are used for parameters or function results:

Pascal C/C++ Description
integer int 32-bit signed integer
cardinal uint 32-bit unsigned integer
pointer void * 32-bit pointer
PChar char * 32-bit pointer to a character string
boolean int 32-bit true/false value
HWnd hwnd Windows handle

TRect TRect Windows rectangle structure (with "+1" conventions1)

Consists of four 32-bit integers: Left, Top, Right, and Bottom.

TVideoEvent void * 32-bit pointer to a V++ callback function

Hot Loading
To ensure that your driver is fully compatible with hot loading, do not include automatic
initialization and finalization code in the DLL. All initialization and clean-up should be done in the
OpenDriver and CloseDriver functions that every driver must implement.

1 The rectangle "+1" conventions used by Windows means that the TRect is defined so that:

Right = Left + Width and Bottom = Top + Height

V++ Video Driver Writer's Guide 8

Chapter 2 – Driver Overview

Memory Layout
Functions that return image or sequence data do so in a raw packed format with no headers and no
padding. V++ allocates memory for functions that need it and the driver must write any image data
to the addresses provided. Image data is stored row-wise as packed bytes, for example:

•

•

A monochrome image of 640 × 480 with 8-bits per pixel is stored as 480 rows of 640 bytes,
making a total of exactly 307,200 bytes. The first 640 bytes contain the first row and so on.

A color image is stored in a similar way except that each pixel consists of 3 components – one
each for red, green and blue. For a 640 × 480 image with 24-bits per pixel, the data would be
stored as 480 rows of 1,920 bytes (3 × 640), for a total of 921,600 bytes. Each pixel consists
of three bytes stored in the order R, G, B – do not use the DIB reversed component order.

Do not write past the end of memory buffers supplied by V++ – this would almost certainly result in
an access violation error in the driver.

Registry Settings
There are numerous settings that a video driver might need to store in the registry, depending on
the function it exports. V++ automatically stores ROI information for each device in the registry but
all other settings that need to be preserved between sessions are the responsibility of the driver.

We recommend that you store driver settings in your own area of the registry, using the per user
settings branch. For example, if a company called "XYZ Inc." produces a driver for a device called
"VideoMaster" then its root key in the registry would be similar to the following:

HKEY_CURRENT_USER\Software\XYZ Inc\VideoMaster

You should store settings and configuration information when CloseDriver is called or whenever
something changes. These settings should be restored on startup, when OpenDriver is called.

Loading and Installing a Driver
Installing a video driver in V++ is very simple and can be done manually, by the end-user, or
automatically with an installation program.

Manual Installation
To install a video driver manually, copy all of its files to a folder on the hard disk and use the Load
button on the Video | System dialog box to locate and load the primary DLL file. This is described in
more detail in the V++ online help (search for "video" then "Getting Started with Video"). Once the
driver has been installed it will be loaded at startup on subsequent sessions. Drivers can be
unloaded from the Video | System dialog box.

Automatic Installation
You can use an install program to install your driver's files on the user's hard disk and to make
registry settings that tell V++ to load it at startup. You can also make a registry setting to ensure
that the V++ video acquisition add-in is enabled.

The base registry location, or "base key", for V++ settings is as follows:

HKEY_CURRENT_USER\Software\Digital Optics\V++

All V++ settings are stored at this location in a sub-key named according to the version number.
For example, for V++ 4.0 the registry settings are stored under the following key:

HKEY_CURRENT_USER\Software\Digital Optics\V++\4.0

V++ Video Driver Writer's Guide 9

Chapter 2 – Driver Overview

The version string for the latest V++ installation is stored as a REG_SZ string called "Version" under
the base key. This allows you to automatically make driver settings in the correct registry sub-tree
no matter what version is installed. If the "Version" value is missing then use the default version
string "4.0".

The list of drivers to be loaded is stored in the following registry location (for version 4.0):

HKEY_CURRENT_USER\Software\Digital Optics\V++\4.0\Add-Ins\Video\Drivers

Under that key you will find a string entry for each driver, containing the full path of the main DLL
file. The names of the string entries are "Driver0", "Driver1" and so on.

To add your own driver to the list, first create an appropriate string entry with any name that is not
already in use. It does not have to form part of the sequence used by default. For example, an
installer for a device called "VideoMaster" might add an entry called "VideoMaster" containing the
path information.

When V++ next runs, it loads all of the drivers with an entry under this registry key and converts
the list to its preferred format if there are any names not in the standard sequence.

Secondly, you should ensure that the V++ video acquisition add-in is enabled by checking a registry
setting under the following key (for version 4.0):

HKEY_CURRENT_USER\Software\Digital Optics\V++\4.0\Add-Ins\Video

The "Enabled" value at this location determines whether or not video support is turned on. Your
installer should ensure that the video acquisition system is enabled and that drivers will be loaded
by setting Enabled to an integer value of 1.

IMPORTANT NOTES
•

•

Do not make any entries in the "…\Add-Ins\Video\Devices" branch of the registry as V++ uses
this to store its own information about available devices.

The first version of V++ with video capabilities was 4.0.5.68

Modifications
This specification for a V++ video driver may change from time to time, usually because new
functions have been added. All such new functions will be optional so that old drivers remain
compatible with future releases of V++. This also means that older versions of V++ will always be
able to load newer drivers.

This is the second edition of the specification. The following new functions were added:

CaptureSequenceEx
GetMaxFrameRate
GetMinTimeout
IsOsSupported

See later chapters for full information.

V++ Video Driver Writer's Guide 10

Chapter 3

3. Function Categories

This section summarizes all of the function groups that a driver may implement. Only the first
category is mandatory although some of the others are highly recommended (see
Recommendations at the end of this chapter). Detailed function definitions are provided in the
chapters that follow.

Basic Functions
The following 8 functions are mandatory and must be implemented by every V++ video driver:

OpenDriver Initialize the driver and any subordinate libraries it may use

CloseDriver Clean up internal structures and shutdown the driver

GetDeviceName Return the name of the selected video device

DeviceReady Return true or false to indicate whether the device is ready for use

DeviceError Return a code indicating the error condition

GetFrameInfo Return the x-size, y-size, bit depth and sample count of the video frame

Snapshot Capture and store a single video frame

ReadFrame Copy the stored video frame into host memory (provided by V++)

System Functions
If the driver supports multiple devices then it must implement all of the following functions:

GetDeviceCount Return the total number of devices supported by the driver and available

SelectDevice Select a device by its zero-based index number

SelectedDevice Return the index number of the currently selected device

Driver Information
The following optional functions provide information about the driver. If available, the information is
displayed by the Video | System dialog box:

GetDriverName Return the driver's name (may be different to the device name)

GetDriverProvider Return the name of the driver developer

GetDriverVersion Return a version number string for the driver

Implementing these functions is recommended as it is very easy to do and provides valuable
feedback to the V++ user.

Performance Information
The driver may implement the following functions to provide information to V++ about the
performance characteristics of the hardware and the driver:

GetMaxFrameRate Return the maximum supported frame rate

GetMinTimeout Return the minimum recommended capture timeout

IsOsSupported Indicates whether the driver works under the installed operating system

These functions are supported by V++ 4.0.5.94 and later releases.

V++ Video Driver Writer's Guide 11

Chapter 3 – Function Categories

Region of Interest
If there is hardware support for region of interest frame capture then the driver may implement the
following routines:

SetROI Set a rectangular region of interest within the video frame

GetROI Return the current region of interest

ReadROI Copy image data from the region of interest into a memory buffer

If the functions above are not implemented, then V++ will simulate ROI support if the ReadBuffer
function is available (see below).

Asynchronous Capture
To enable V++ to perform asynchronous video capture operations the driver must implement the
following functions:

ASyncCapture Start a frame capture operation and return immediately

ASyncStop Perform any clean up tasks required following an asynchronous capture

ASyncStatus Return a code indicating the asynchronous capture status

ASyncAbort Terminate any pending capture operations

The minimum subset of these routines required for asynchronous operations is ASyncCapture and
ASyncStatus – implementing these functions is highly recommended for optimum performance.

Frame Buffer
The following functions, if implemented, return extended information about the video frame and
provide direct access to frame buffer memory on the device.

GetSampleFormat Return a code indicating the interpretation of pixel samples

GetPixelAspect Return the physical aspect ratio of the pixels

ReadBuffer Copy image data from a region in the frame buffer to a memory buffer

WriteBuffer Copy image data from host memory into a region in the frame buffer

These functions do not have to be implemented as a group so you may implement only those that
you wish to provide.

Input Channels
Many frame grabbers support more than one video input channel. If these are software selectable
then the driver may implement the following control functions:

GetChannelCount Return the number of video channels available on the device

SelectChannel Switch to a channel by its zero-based index number

SelectedChannel Return the index number of the currently selected input channel

V++ Video Driver Writer's Guide 12

Chapter 3 – Function Categories

Continuous Capture
The following routines may be implemented to support continuous capture, or "video streaming", on
devices that are capable of it. Streaming involves continuously capturing frames and transferring
them to an internal or hardware buffer.

SetContinuous Turn continuous capture mode on or off

GetContinuous Return the current status of continuous capture mode

Integration
Certain frame grabbers and cameras support on-chip integration (ie. selectable exposure times). To
support integrating cameras the driver must implement the following functions:

SetExposureTime Set the exposure time for an integrating camera

GetExposureTime Get the current exposure time setting

Exposure Modes
If alternate exposure modes are available then the driver must implement the following routines to
support them. At present, the only options are normal exposure or externally triggered exposure.

SetExposureMode Set the exposure mode to normal or triggered

GetExposureMode Get the current exposure mode setting

SetTriggerTimeout Set the timeout for a triggered exposure

GetTriggerTimeout Get the current trigger timeout value

Sequences
If the device supports hardware sequence acquisition then the driver may implement this using the
following function:

CaptureSequence Perform a hardware assisted sequence capture into pre-allocated memory

CaptureSequenceEx Perform a hardware assisted sequence capture into pre-allocated memory

The CaptureSequenceEx function supercedes the CaptureSequence function although both are still
recognised. See the Sequences chapter for more information.

Note that these routines should only be implemented to provide hardware assistance for sequence
capture. If neither is implemented then V++ provides timing for the capture of sequences. If the
driver supports asynchronous capture and the device is fast then V++ can capture video sequences
in real time, even without hardware assistance.

Digital I/O Lines
Many frame grabbers and digital cameras incorporate TTL input and/or output lines for integration
with other apparatus. To make this capability available in V++ the driver must implement one or
both of the following functions:

ReadTTL Read the states of the TTL inputs

WriteTTL Write to the TTL outputs

V++ Video Driver Writer's Guide 13

Chapter 3 – Function Categories

User Interface Support
A video driver may implement up to two custom dialog boxes – one for hardware configuration and
one for control of specialized hardware, as follows. It is highly recommended that you implement
ShowConfigForm in your video drivers. However, most drivers will not need to implement
ShowCustomForm.

ShowConfigForm Display a modal dialog box for hardware configuration

ShowCustomForm Display a modal or modeless dialog box for hardware control

Drivers may define their own error messages to go with the codes they return in the ErrorCode
function. To do so, implement the following function

DeviceMessage Convert an error code (from DeviceError) into an error message

V++ provides default messages if this function is not implemented. However, if ErrorCode returns
non-standard codes then it is recommended that the driver implements DeviceMessage as well.

Command Interface
Drivers may implement a command interface for any purpose they may require (eg. debugging,
support for specialized features, quick configuration etc…) using the following function:

Execute Execute a custom command sent direct to the driver

This is an excellent way to extend VPascal support for specialized hardware.

Recommendations
In addition to the 8 mandatory functions, it is highly recommended that you implement the
following optional functions:

 GetDriverName

 GetDriverProvider

 GetDriverVersion

 GetMinTimeout

 ASyncCapture

 ASyncStatus

 ReadBuffer

 ShowConfigForm

Although not compulsory, these optional functions enable V++ to provide better performance with
any video device.

V++ Video Driver Writer's Guide 14

Chapter 4

4. Basic Functions

Basic functions are mandatory and must all be implemented by every V++ video driver. They
represent the minimum functionality required to integrate into the V++ video system.

OpenDriver

Initialize the hardware, the driver and any subordinate libraries

Declaration
procedure OpenDriver ;
void OpenDriver() ;

Details
This function is called immediately after V++ loads the driver. Put all initializations here rather than
in a DLL initialization section.

CloseDriver

Clean up internal structures and shutdown the driver

Declaration
procedure CloseDriver ;
void CloseDriver() ;

Details
This function is called when V++ terminates or unloads the driver. Use this function for cleaning up
and freeing resources used by the DLL. Avoid using a DLL exit procedure.

GetDeviceName

Return the name of the selected video device

Declaration
function GetDeviceName(Name:PChar; nChars:integer) : PChar ;
char *GetDeviceName(char *Name; int nChars) ;

Parameters
Name Pointer to a string buffer into which the device name is to be written
nChars The maximum string length the buffer can take

Return Value
For convenience, the function should return the pointer Name.

Details
The name returned by this function is the device name used on tabbed video dialogs and on the
individual bands of the VideoBar™.

V++ Video Driver Writer's Guide 15

Chapter 4 – Basic Functions

DeviceReady

Return true or false to indicate whether the device is ready for use

Declaration
function DeviceReady : boolean ;
int DeviceReady() ;

Details
Return true (1) if the selected video device is ready to digitize a frame. If the device can't be
detected or is busy then return false (0).

DeviceError

Return a code indicating the error condition

Declaration
function DeviceError : integer ;
int DeviceError() ;

Details
Return an error code for the selected device or 0 if there is no error condition. If you implement
DeviceMessage then you can choose your own error codes, otherwise use the following:

0 There are no errors
1 Timeout error waiting for an operation
2 No response from device

You must always return 0 to indicate that there is no error – even if you have chosen your own
error codes.

GetFrameInfo

Return the x-size, y-size, bit depth and sample count of the video frame

Declaration
procedure GetFrameInfo(var xSize,ySize,BitDepth,Samples:integer) ;
void GetFrameInfo(int *xSize, int *ySize, int *BitDepth, int *Samples) ;

Parameters
xSize Set to the x-size of the video frame
ySize Set to the y-size of the video frame
BitDepth Set to the bit depth of each sample
Samples Set to the number of samples per pixel

Details
Monochrome devices should return with Samples = 1 and RGB color devices should return with
Samples = 3. For example, a 24-bit RGB color frame grabber returns BitDepth = 8 (as each
component is 8 bits) and Samples = 3.

V++ Video Driver Writer's Guide 16

Chapter 4 – Basic Functions

If the sample format is other than unsigned integer then you should implement GetSampleFormat.
This enables you to implement drivers that capture signed integer and floating point data.

Snapshot

Capture and store a single video frame

Declaration
procedure Snapshot ;
void Snapshot() ;

Details
This is the most basic function of a video capture device – to digitize and store a single frame. This
function should wait until the digitization is complete before returning and the image should be
stored in the device frame buffer. If your device cannot store the image then it is up to the driver to
buffer the data until V++ reads it out.

ReadFrame

Copy the stored video frame into host memory (provided by V++)

Declaration
procedure ReadFrame(Data:pointer) ;
void ReadFrame(void *Data) ;

Parameters
Data Pointer to an image buffer created by V++

Details
The entire video frame buffer should be copied into the host buffer pointed to by Data. The host
buffer will be large enough to take one full frame of video data. See chapter 2 for information about
image memory layout.

V++ Video Driver Writer's Guide 17

Chapter 5

5. System Functions

System functions provide for supporting more than one device with a single video driver. V++ can
use all devices supported by a driver and can load more than one driver simultaneously. If your
driver supports multiple video devices then you must implement all of the following functions.

GetDeviceCount

Return the total number of devices supported by the driver

Declaration
function GetDeviceCount : integer ;
int GetDeviceCount() ;

Details
This function must return the number of devices that are currently available through this driver. Do
not include devices that are potentially available – only those that can be accessed right now. This
total should be fixed once OpenDriver has been called.

If N devices are available then they must be numbered from 0 to N-1. The driver must keep track of
the currently selected device and ensure that all other functions operate exclusively on the selected
device.

SelectDevice

Select a device by its zero-based index number

Declaration
procedure SelectDevice(Index:integer) ;
void SelectDevice(int Index) ;

Parameter
Index The zero-based index of the device

Details
If there is an attempt to select a non-existent device it should simply be ignored.

SelectedDevice

Return the index number of the currently selected device

Declaration
function SelectedDevice : integer ;
int SelectedDevice() ;

V++ Video Driver Writer's Guide 18

Chapter 6

6. Driver Information

The optional functions described here provide information about the driver that is displayed by the
Video | System dialog box. Implementing these functions is recommended as it is very easy to do
and provides valuable feedback to the V++ user.

GetDriverName

Return the driver's name (may be different to the device name)

Declaration
function GetDriverName(Name:PChar; nChars:integer) : PChar ;
char *GetDriverName(char *Name; int nChars) ;

Parameters
Name Pointer to a string buffer into which the driver name is to be written
nChars The maximum string length the buffer can take

Return Value
For convenience, the function should return the pointer Name.

Details
The driver may have a name that differs from the device it controls (particularly if it controls
multiple devices). The name returned by this function is used to identify the driver in the list of
loaded drivers on the Video | System dialog box.

GetDriverProvider

Return the name of the driver developer

Declaration
function GetDriverProvider(Name:PChar; nChars:integer) : PChar ;
char *GetDriverProvider(char *Name; int nChars) ;

Parameters
Name Pointer to a string buffer into which the provider name is to be written
nChars The maximum string length the buffer can take

Return Value
For convenience, the function should return the pointer Name.

Details
The result of this function is displayed in the "Provider" column of the Video | System driver list.
Return your own name of that of your company.

V++ Video Driver Writer's Guide 19

Chapter 6 – Driver Information

GetDriverVersion

Return a version number string for the driver

Declaration
function GetDriverVersion(Version:PChar; nChars:integer) : PChar ;
char *GetDriverVersion(char *Version; int nChars) ;

Parameters
Version Pointer to a string buffer into which the device version is to be written
nChars The maximum string length the buffer can take

Return Value
For convenience, the function should return the pointer Version.

Details
Create and return a formatted string indicating the version number of your driver. It will be
displayed in the appropriate column of the Video | System driver list.

V++ Video Driver Writer's Guide 20

Chapter 7

7. Performance Information

The driver may implement several functions to provide information to V++ about the performance
characteristics of the hardware and the driver.

The performance information functions are supported by V++ 4.0.5.94 and later releases. Earlier
releases will simply ignore these functions.

GetMaxFrameRate

Return the maximum frame rate supported by the hardware and driver

Declaration
function GetMaxFrameRate : integer ;
int GetMaxFrameRate() ;

Details
This function should return the maximum possible frame rate that the selected device could be
expected to achieve. The return value is not expected to be a guarantee of performance but is used
to set parameter limits in video dialog boxes.

GetMinTimeout

Return the minimum recommended capture timeout for the selected device

Declaration
function GetMinTimeout : integer ;
int GetMinTimeout() ;

Details
Where possible, V++ performs capture operations using the asynchronous functions in order to
impose an overall timeout in the case of unresponsive hardware. This function should be
implemented if a frame capture may take longer than a typical video frame time. Returning a more
suitable timeout value than the default eliminates spurious timeout errors.

This function should take into account the exposure mode – if the triggered exposure mode is in
effect then the trigger timeout should be returned if it is greater than the normal timeout.

V++ Video Driver Writer's Guide 21

Chapter 7 – Performance Information

IsOsSupported

Return true or false to indicate whether the driver can operate in the installed operating system

Declaration
function IsOsSupported : boolean ;
int IsOsSupported() ;

Return Value
Returns true (1) if the installed operating system is supported and false (0) otherwise

Details
Some drivers may be restricted to run only in specific operating systems. In these cases, this
function should be implemented so that V++ can determine the OS compatibility at load time. The
driver should use the Windows GetVersionEx() API function to find out what operating system is
running and return a true or false result accordingly.

V++ Video Driver Writer's Guide 22

Chapter 8

8. Region of Interest

V++ supports region of interest (ROI) processing for video capture if there is sufficient driver
support. The functions described here are mainly intended for devices that have hardware support
for region of interest frame capture.

V++ automatically provides ROI functionality if either:

a) the ROI functions described here are implemented, or
b) the ReadBuffer function is implemented

The simplest way to enable ROI support for your video device is simply to implement ReadBuffer.

If an ROI is defined and enabled for a particular device then all subsequent capture operations on
that device will produce images from the ROI.

V++ preserves ROI settings, on a per device basis, between sessions. Therefore, your driver does
not need to keep track of these settings.

SetROI

Set a rectangular region of interest within the video frame

Declaration
procedure SetROI(Rect:TRect) ;
void SetROI(TRect Rect) ;

Parameter
Rect The rectangle definition (+1) describing the required ROI

Details
This function is used to set the region of interest boundaries for the device. Note that the rectangle
is defined as Windows TRect, and therefore:

Rect.Right = Rect.Left + Width
Rect.Bottom = Rect.Top + Height

where Width and Height are the inclusive dimensions of the ROI.

IMPORTANT
If an empty rectangle is passed in (ie. one where Left = Right and Top = Bottom) then this cancels
the ROI and indicates that the driver should revert to full frame capture.

V++ Video Driver Writer's Guide 23

Chapter 8 – Region of Interest

GetROI

Return the current region of interest within the video frame

Declaration
function GetROI : TRect ;
TRect GetROI() ;

Return Value
The current region of interest (see SetROI for more information). If no ROI is selected then this
function should return an empty rectangle.

ReadROI

Copy image data from the region of interest into a memory buffer

Declaration
procedure ReadROI(Data:pointer) ;
void ReadROI(void *Data) ;

Parameters
Data Pointer to an image buffer created by V++

Details
Only the image data from the current region of interest should be copied into the buffer pointed to
by Data. If no ROI is defined then this function should do nothing. See chapter 2 for information
about image memory layout.

V++ Video Driver Writer's Guide 24

Chapter 9

9. Asynchronous Capture

Asynchronous video capture operations are those that return immediately – without waiting for the
frame capture to complete. This enables the calling application to perform other tasks while a frame
capture is in progress and to readout the data when it is ready.

To enable V++ to perform asynchronous video capture operations the driver must implement the
functions described here. Only ASyncCapture and ASyncStatus are required to enable
asynchronous operation – implementing these two functions is highly recommended for optimum
performance.

ASyncCapture

Start a frame capture operation and return immediately

Declaration
procedure ASyncCapture ;
void ASyncCapture() ;

Details
This function performs a similar task to Snapshot but does not wait for the frame capture to
complete. Capturing one frame of NTSC video can take between 33 and 66 ms depending on
whether or not the device needs to wait for the start of the next frame. Implementing this function
(along with ASyncStatus) enables V++ to perform other tasks during this time.

ASyncStatus

Return a code indicating the asynchronous capture status

Declaration
function ASyncStatus : integer ;
int ASyncStatus() ;

Return Value
An integer status code chosen from the following:

0 Ready to readout
1 Capture pending
2 Capture in progress

Details
When the device is idle, whether or not ASyncCapture has been called, this function should return 0
to indicate that ReadFrame or a similar function may be called. If the device is busy then return
either 1 or 2 to indicate that data is about to be acquired. It is not strictly necessary to distinguish
between the two cases as some frame grabbers do not differentiate between the pending and in-
progress states.

V++ Video Driver Writer's Guide 25

Chapter 9 – Asynchronous Capture

ASyncAbort

Terminate any pending capture operations

Declaration
procedure ASyncAbort ;
void ASyncAbort() ;

Details
Implementing this function is optional but may be useful if supported by hardware. If this function
were called, the intent would be to abandon the capture operation and not to read out any data.

ASyncStop

Perform any clean up tasks required following an asynchronous capture

Declaration
procedure ASyncStop ;
void ASyncStop() ;

Details
Some frame grabbers require capture operations to be explicitly finished – this function can be
implemented if that is the case for your device. However, most drivers will not need to implement
this function.

V++ Video Driver Writer's Guide 26

Chapter 10

10. Frame Buffer Functions

The following functions, if implemented, return extended information about the video frame and
provide direct access to frame buffer memory on the device. These functions do not have to be
implemented as a group so you may implement only those that you wish to provide.

It is highly recommended that you implement the ReadBuffer function for any device capable of
direct access to the frame buffer memory.

GetPixelAspect

Return the physical aspect ratio of the pixels

Declaration
procedure GetPixelAspect(var xa,ya:integer) ;
void GetPixelAspect(int *xa, int *ya) ;

Parameters
xa Horizontal pixel dimension
ya Vertical pixel dimension

Details
Some frame grabbers digitize a standard 4:3 video signal into a square memory block. This results
in unequal sampling rates in the horizontal and vertical directions, ie. non-square pixels. This
function must return the physical aspect ratio of the pixels relative to each other. For example, if
the device digitizes a video image into a 512 x 512 memory buffer then the aspect ratio is 4:3 and
the function should return xa = 4 and ya = 3.

GetSampleFormat

Return a code indicating the interpretation of pixel samples

Declaration
function GetSampleFormat : integer ;
int GetSampleFormat() ;

Return Value
The sample format code, as follows:

0 Default V++ format (unsigned integer)
1 Unsigned integer
2 Signed integer
3 Floating-point (IEEE)

Details
The majority of video capture devices return unsigned integer data at a variety of bit depths. For
devices that return other data formats, implement this function and return the appropriate code.
The format codes refer to an individual sample – in the case of an RGB color image, a sample
means one of the three components that make up each pixel.

V++ Video Driver Writer's Guide 27

Chapter 10 – Frame Buffer Functions

ReadBuffer

Copy image data from a region in the frame buffer to a memory buffer

Declaration
procedure ReadBuffer(Rect:TRect; Data:pointer) ;
void ReadBuffer(TRect Rect, void *Data) ;

Parameters
Rect The rectangular region to read data from
Data Pointer to an image buffer created by V++

Details
Almost all video capture devices have a frame buffer memory. This function must copy image data
directly from the frame buffer into a host memory buffer. The region is defined as a Windows TRect
and therefore:

Rect.Right = Rect.Left + Width
Rect.Bottom = Rect.Top + Height

where Width and Height are the inclusive dimensions of the region. If an empty rectangle is passed
in (ie. one where Left = Right and Top = Bottom) then no data should be copied.

Only data from the specified region of the frame buffer can be copied. Refer to chapter 2 for more
information about memory layout.

IMPORTANT
This function is used to simulate ROI functionality if no ROI specific routines are available. It is
therefore highly recommended that drivers implement this function.

WriteBuffer

Copy image data from host memory into a region in the frame buffer

Declaration
procedure WriteBuffer(Rect:TRect; Data:pointer) ;
void WriteBuffer(TRect Rect, void *Data) ;

Parameters
Rect The rectangular region to write data to
Data Pointer to an image buffer created by V++

Details
Almost all video capture devices have a frame buffer memory. This function is used to write image
data directly into the frame buffer. Its main importance is for frame grabbers that provide a video
output that can be connected directly to either an auxiliary monitor or a video printer.

Most drivers do not need to implement this function.

V++ Video Driver Writer's Guide 28

Chapter 11

11. Input Channels

Many frame grabbers support more than one video input channel. If these are software selectable
then the driver may implement the control functions described here.

Input channels must be numbered from 0.

GetChannelCount

Return the number of video channels available on the device

Declaration
function GetChannelCount : integer ;
int GetChannelCount() ;

Return Value
The number of video input channels available.

SelectChannel

Switch to a channel by its zero-based index number

Declaration
procedure SelectChannel(Index:integer) ;
void SelectChannel(int Index) ;

Parameter
The zero-based channel index number

Details
The driver is responsible for maintaining channel selection between sessions. However, it is
acceptable to always default to channel 0 on startup.

SelectedChannel

Return the index number of the currently selected input channel

Declaration
function SelectedChannel : integer ;
int SelectedChannel() ;

Return Value
The channel index number

V++ Video Driver Writer's Guide 29

Chapter 12

12. Continuous Capture

Continuous capture is a mode in which the video device continuously captures frames and transfers
them to a memory buffer. In modern cameras, this kind of operation may be called "video
streaming" but in older frame grabbers it was often called "continuous grab".

Continuous capture mode is not used for sequence capture, even at real time rates, and therefore
most drivers will not need to implement it. However, there are some situations where it is likely to
be very useful, for example:

• When working with a camera that needs to enter video streaming mode in order to support
asynchronous capture (some industrial Firewire cameras are in this category).

• With an older frame grabber in order to support real time focussing on an auxiliary monitor

IMPORTANT
The driver must ensure that all other functions continue to operate as expected if continuous grab
mode is enabled. For example, if continuous capture is turned on then the asynchronous capture
routines (see chapter 9) may need to operate differently.

SetContinuous

Start or stop continuous capture mode

Declaration
procedure SetContinuous(State:boolean) ;
void SetContinuous(int State) ;

Parameter
State Set true (1) to turn on continuous capture and false (0) to turn it off

GetContinuous

Return the current state of continuous capture mode

Declaration
function GetContinuous : boolean ;
int GetContinuous() ;

Return Value
The present state of continuous capture mode. Return true (1) if continuous capture is turned on
and return false (0) otherwise.

V++ Video Driver Writer's Guide 30

Chapter 13

13. Integration

Certain frame grabbers and cameras support on-chip integration (ie. selectable exposure times).
Typically, a special video camera is required with a control line that determines the length of the
exposure. The integration control line is operated either by the host computer or by a compatible
frame grabber.

To support integrating cameras the driver must implement the following functions:

SetExposureTime

Set the exposure time for an integrating camera

Declaration
procedure SetExposureTime(msTime:integer) ;
void SetExposureTime(int msTime) ;

Parameter
msTime The exposure time in milliseconds

Details
Setting the exposure time to 0 must cancel the integration mode and revert to standard video
exposure times.

GetExposureTime

Get the current exposure time setting

Declaration
function GetExposureTime : integer ;
int GetExposureTime() ;

Return Value
The current exposure time in milliseconds

V++ Video Driver Writer's Guide 31

Chapter 14

14. Exposure Modes

If alternate exposure modes are available then the driver must implement the following routines to
support them. At present, the only options are normal exposure or externally triggered exposure.

SetExposureMode

Set the exposure mode to normal or triggered

Declaration
procedure SetExposureMode(Mode:integer) ;
void SetExposureMode(int Mode) ;

Parameter
Mode The required exposure mode, as follows:

0 Normal exposure
1 Externally triggered exposure

Details
The only exposure modes available at present are normal and triggered, however additional modes
may be implemented in future. If external triggering is supported then it is advisable to implement
the SetTriggerTimeout function as well.

GetExposureMode

Get the current exposure mode setting

Declaration
function GetExposureMode : integer ;
int GetExposureMode() ;

Return Value
The current exposure mode, as defined in SetExposureMode.

SetTriggerTimeout

Set the timeout for a triggered exposure

Declaration
procedure SetTriggerTimeout(msTime:integer) ;
void SetTriggerTimeout(int msTime) ;

Parameter
msTime The timeout delay in milliseconds

Details
If a device is waiting for an external trigger before performing a capture operation then it is possible
for the driver to hang if the trigger never comes. To provide for a timeout delay on triggered
exposures then implement this function. Provided SetTriggerTimeout and GetTriggerTimeout are

V++ Video Driver Writer's Guide 32

Chapter 14 – Exposure Modes

available then V++ will monitor the timeout for you wherever possible. In some situations (such as
a snapshot) the driver must monitor the timeout itself.

GetTriggerTimeout

Get the current trigger timeout value

Declaration
function GetTriggerTimeout : integer ;
int GetTriggerTimeout() ;

Return Value
The timeout delay in milliseconds

V++ Video Driver Writer's Guide 33

Chapter 15

15. Sequences

If a video device provides hardware assistance for fast sequence capture then you can make this
available to V++ by implementing the CaptureSequence and CaptureSequenceEx functions.

NOTE
The CaptureSequence routine has been superceded by CaptureSequenceEx which returns the
actual frame rate achieved (it is otherwise identical to CaptureSequence). The newer
CaptureSequenceEx function is recognised by V++ 4.0.5.94 and later releases but drivers
should implement both routines if they wish to remain compatible with earlier versions.

CaptureSequence

Perform a hardware assisted sequence capture into pre-allocated memory
This routine has been superceded by CaptureSequenceEx (see below)

Declaration
procedure CaptureSequence(nFrames,msPeriod:integer; Data:pointer) ;
void CaptureSequence(int nFrames, int msPeriod, void *Data) ;

Parameters
nFrames The total number of frames to capture
msPeriod The time between frames, in milliseconds
Data Pointer to a sequence buffer created by V++

Details
Implement this function if the video device provides hardware assistance for fast sequence capture.
If msPeriod is zero (or simply less than the minimum possible frame time) then perform a
maximum rate capture.

If an ROI is defined then each sequence frame must confirm to the ROI boundaries, otherwise each
frame must be full size. The buffer pointed to by Data will be large enough to store exactly nFrames
frames. See chapter 2 for information about memory layout.

V++ provides real time sequence timing if this function is not implemented (provided the hardware
is fast enough).

CaptureSequenceEx

Perform a hardware assisted sequence capture into pre-allocated memory
This routine replaces the older CaptureSequence routine (defined above)

Declaration
function CaptureSequenceEx(nFrames,msPeriod:integer; Data:pointer) : integer ;
int CaptureSequenceEx(int nFrames, int msPeriod, void *Data) ;

Parameters
nFrames The total number of frames to capture
msPeriod The time between frames, in milliseconds
Data Pointer to a sequence buffer created by V++

V++ Video Driver Writer's Guide 34

Chapter 15 – Sequences

Return Value
The actual frame rate achieved during the sequence acquisition (in frames/second)

Details
Implement this function if the video device provides hardware assistance for fast sequence capture.
If msPeriod is zero (or simply less than the minimum possible frame time) then perform a
maximum rate capture.

If an ROI is defined then each sequence frame must confirm to the ROI boundaries, otherwise each
frame must be full size. The buffer pointed to by Data will be large enough to store exactly nFrames
frames. See chapter 2 for information about memory layout.

This function should compute and return the actual frame rate achieved when the sequence was
captured. If you do not wish to implement this computation then either return zero or the inverse of
the frame delay time passed in (msPeriod).

V++ provides real time sequence timing if this function is not implemented (provided the hardware
is fast enough).

V++ Video Driver Writer's Guide 35

Chapter 16

16. Digital I/O Lines

Many frame grabbers and digital cameras incorporate TTL input and/or output lines for integration
with other apparatus. To make this capability available in V++ the driver must implement one or
both of the following functions.

You may support up to 32 input and/or output TTL lines which are mapped to individual bits in the
values read and written by these functions.

ReadTTL

Read the states of the TTL inputs

Declaration
function ReadTTL : integer ;
int ReadTTL() ;

Return Value
An integer (32-bits) in which each bit indicates the value of one of the TTL input lines, numbered
from 0 to 31.

Details
If there are fewer than 32 lines then simply set the bits corresponding to the lines you do have.

WriteTTL

Write to the TTL outputs

Declaration
procedure WriteTTL(Value:integer) ;
void WriteTTL(int Value) ;

Parameter
Value An integer (32-bits) in which each bit indicates the value to be written to one of the TTL

input lines, numbered from 0 to 31.

Details
If there are fewer than 32 lines then simply set the bits corresponding to the lines you do have.

V++ Video Driver Writer's Guide 36

Chapter 17

17. User Interface Support

A video driver may implement up to two custom dialog boxes – one for hardware configuration and
one for general control of specialized hardware, by implementing the following functions. It is highly
recommended that you implement ShowConfigForm in your video drivers. However, most drivers
will not need to implement ShowCustomForm.

In addition, drivers may implement the DeviceMessage function to define their own error messages
to go with the codes they return in the ErrorCode function.

DeviceMessage

Convert an error code (from DeviceError) into an error message

Declaration
function DeviceMessage(Msg:PChar; nChars,Code:integer) : PChar ;
char *DeviceMessage(char *Msg, int nChars, int Code) ;

Parameters
Msg Pointer to a string buffer into which the error message is to be written
nChars The maximum string length the buffer can take
Code The error code

Return Value
For convenience, the function should return the pointer Msg.

Details
V++ provides default messages if this function is not implemented. However, if ErrorCode returns
non-standard codes then it is recommended that the driver implements DeviceMessage as well.

ShowConfigForm

Display a modal dialog box for hardware configuration

Declaration
function ShowConfigForm(Parent:HWnd) : integer ;
int ShowConfigForm(hwnd Parent) ;

Parameter
Parent The Windows handle of the V++ parent window

Return Value
The modal result of the dialog box

Details
It is highly recommended that you implement this function so that the user can configure the video
device inside the V++ environment. Drivers should write any configuration changes to the registry.

The dialog box can include any kind of capability you may require but should limit its actions to
configuring the hardware. The dialog may change any of the visible frame capture settings,
including the dimensions of the video frame itself, as V++ will automatically update when the
function returns.

V++ Video Driver Writer's Guide 37

Chapter 17 – User Interface Support

The configuration must be modal, ie. you must not be able to return to V++ without closing the
dialog.

If you are writing your driver in Borland Delphi or Borland C++ Builder then use the following
outline to write this function:

•

•

•

•

•

•

Set the driver's Application.Handle property to the value of Parent

Create the form with the local Application object as the owner

Set the FormStyle to fsStayOnTop

Display the form using ShowModal

Free the form

Return the form's ModalResult as the function result

In other languages, use the Parent parameter as the parent window of the dialog box.

IMPORTANT
Be sure to always return the correct modal result (ie. id_Ok if something has changed, id_Cancel
otherwise) so that V++ settings remain synchronized with driver settings.

ShowCustomForm

Display a modal or modeless dialog box for customized hardware control

Declaration
function ShowCustomForm(Parent:HWnd; Id:integer; Notify:TVideoEvent) : boolean ;
int ShowCustomForm(hwnd Parent, int Id, TVideoEvent Notify) ;

Parameters
Parent The Windows handle of the V++ parent window
Id Driver identifier
Notify Pointer to a V++ callback function (details below)

Return Value
Return true (1) if V++ should readout a video frame on return and false (0) otherwise.

Details
This function enables you to implement a complete custom user interface for your video driver.
Most drivers have no need to implement ShowCustomForm but you may wish to do so if you have
specialized requirements or wish to extend the V++ video user interface.

If this function is implemented then V++ displays a "Control" command on the Video menu that
enables you to launch it. Similarly, an additional button appears on the appropriate section of the
VideoBar™.

The dialog box displayed by ShowCustomForm may be either modal or modeless and can perform
any kind of video operation at all, including capturing video data and making changes to driver
settings (for example, changing video input channels or the ROI definition). Although it is preferable
to implement hardware configuration using the ShowConfigForm function, it is acceptable to do so
as part of this function also.

V++ Video Driver Writer's Guide 38

Chapter 17 – User Interface Support

If the form is modeless then ShowCustomForm can return immediately with a false (0) result. The
dialog will stay on screen and can trigger readouts into V++ using the Notify callback function
described below.

If you are writing your driver in Borland Delphi or Borland C++ Builder then use the following
outline to write this function:

•

•

•

•

•

•

Set the driver's Application.Handle property to the value of Parent

Create the form with the local Application object as the owner

Set the FormStyle to fsStayOnTop (optional)

Display the form using Show or ShowModal

Return from ShowCustomForm

Free the form either when it is closed or when CloseDriver is called

In other languages, use the Parent parameter as the parent window of the dialog box.

IMPORTANT – V++ Callback
The Notify parameter is a pointer to a callback function in V++ that the dialog box can use to
request readout or to indicate that device settings have been changed. It enables the driver's
custom interface to perform repeated capture operations and to keep V++ synchronized with
changes it makes to settings.

The callback function is defined as follows:

procedure VideoCallback(Id,Event:integer) ;
void VideoCallback(int Id, int Event) ;

It is compiled with the same "standard call" conventions used in the drivers themselves.

When calling the callback function, pass in the Id value that was passed as a parameter to
ShowCustomForm. This is a unique identifier that enables V++ to determine which specific driver is
requesting service. The Event parameter indicates what kind of service is required. The following
events are defined:

0 Data is available in the frame buffer for readout

This event causes V++ to readout and display the image stored in the frame buffer of the
driver's currently selected video device. If an ROI is defined and enabled then only that
area will be read.

1 Device settings have been changed

Use this event to notify V++ that device settings have changed. This ensures that settings
displayed in V++ will remain synchronized with the driver. This is not necessary for custom
settings of which V++ is unaware.

2 Call a shared VPascal procedure

If a VPascal procedure with the DDE share name "Video" exists then this event causes it to
be executed. For more complex interactions the driver should use a full DDE
implementation rather than a callback.

V++ Video Driver Writer's Guide 39

Chapter 18

18. Command Interface

Drivers may implement a command interface for any purpose they may require (eg. debugging,
support for specialized features, quick configuration etc…) using the function described below.

Execute

Execute a custom command sent direct to the driver

Declaration
function Execute(Cmd:PChar; Param:cardinal) : integer ;
int Execute(PChar Cmd, uint Param) ;

Parameters
Cmd Pointer to a string containing a driver command
Param 32-bit unsigned integer

Return Value
32-bit signed integer

Details
The Execute command provides a way for commands to be sent directly to the driver and may be
used for any purpose the driver writer requires. The interpretation of the Cmd and Param parameters
is entirely up to the driver. The return value may or may not be meaningful depending on the
driver.

An important application for Execute is to extend the range of video functions available in VPascal.
For example, if your driver implements a custom interface for a specialized video device (using
ShowCustomForm) then there may be features that you also wish to expose in VPascal. By
implementing Execute you can make some or all of your custom features available to VPascal
programmers (through the VPascal vidDriverCommand function).

It is also possible for a user to issue commands to the driver manually using the Commands button
on the Video | System dialog box. This launches a dialog box that allows you to send commands to
the driver's Execute function, if it has one. This can be very valuable for debugging during the
development of a driver.

V++ Video Driver Writer's Guide 40

Appendix A: Focus Issues

Timing for the V++ video focus dialog box is generated in a special thread which instructs the
dialog box to capture and display frames and synchronizes the display with other GUI activity. The
timing thread does not use a Windows multimedia timer (because these cause problems if latency is
high) and may appear to use a lot of processor time, however it does make significant provisions
for other processes to run.

Although there is no actual "focus loop", it is instructive to consider the sequence of events as
similar to a loop structured as follows:

SetContinuous(true)
ASyncCapture()
Repeat
 Check ASyncStatus() until it returns vid_Ready
 ASyncStop()
 Read image data
 ASyncCapture()
 Update the display
 Check for errors
Until focus is halted
ASyncAbort()
SetContinuous(false)

Notes
• V++ attempts to use asynchronous capture for focussing, in order to increase performance. In

particular, it updates the display with frame N while frame N+1 is being captured. If you don't
implement asynchronous capture then focus will be significantly slower.

• For devices that are capable of continuous capture, or streaming, you can improve focus

performance by making this mode available in your driver. If implemented, continuous capture
mode is turned on before focussing starts and turned off when it is halted.

• Focus can be halted either by the user or automatically due to errors reported by the driver. By

default, a certain number of errors will be tolerated before focus is halted and the tolerance level
can be modified in the V++ registry (see Appendix B).

• If focus is halted while a capture operation is still pending then ASyncAbort() will be called. You

can force V++ to call ASyncAbort() every time focus is halted by making a registry setting (see
Appendix B).

• It is acceptable for the dimensions of the image, and even its data type, to change from frame to

frame while focussing.

V++ Video Driver Writer's Guide 41

Appendix B: V++ Registry Settings

There are a number of registry settings that control the behavior of V++ in video operations. Many
of these are simply the stored values of parameters that the user can set using V++ dialog boxes.
However, others are intended for expert use only and may be useful to driver writers. The
undocumented registry settings are described below.

Value Name Type Description

ActualRate REG_DWORD Set this value true (1) to force V++ to set the frame rate

of a captured sequence to the actual rate achieved rather
than to the requested frame rate. Default is false (0).

AlwaysAbort REG_DWORD If this value is true (1) then V++ will always call

ASyncAbort() when a focus operation halts. By default, the
abort call only takes place if a frame capture is pending
when focus is halted.

DriverSequence REG_DWORD This true/false value controls whether or not V++ calls the

driver's sequence capture functions. If it is false (0) then
sequence capture timing is done internally. The default
setting is true (1).

FocusPeriod REG_DWORD Limits the focus frame rate by setting the minimum inter-

frame time, in milliseconds. Default is 33 ms.

FocusTolerance REG_DWORD Indicates the number of driver errors that will be tolerated

while focus is taking place. Set to 0 if you want to abort
focus on the first error. Default is 5.

GrabTimeout REG_DWORD Sets a timeout value, in milliseconds, after which frame

capture operations will be aborted. Note that V++ also
takes into account the exposure time, trigger timeout
setting and the return value of GetMinTimeout(), if
implemented, when computing the actual timeout to use.
Default is 100 ms.

MaxFrameRate REG_DWORD The maximum frame rate that can be selected in V++

dialog boxes. If the driver implements GetMaxFrameRate()
then its return value overrides this setting. Default is 30
frames per second.

The settings described above are all found in the following registry key (for V++ 4.0):

HKEY_CURRENT_USER\Software\Digital Optics\V++\4.0\Add-Ins\Video

Note that the key path includes the version number of the installed V++ software.

V++ Video Driver Writer's Guide 42

Index

aspect ratio ..27
ASyncAbort ..26
ASyncCapture................................... 14, 25
asynchronous 25, 41
ASyncStatus..................................... 14, 25
ASyncStop ...26
automatic installation................................ 9
callback .. 8
callback function39
calling conventions 8
CaptureSequence34
CaptureSequenceEx.................................34
CloseDriver ..15
color ...16
command interface..................................40
concepts ... 7
continuous capture............................ 30, 41
custom user interface38
data types... 8
device .. 5
device name...15
DeviceError ..16
DeviceMessage37
DeviceReady ..16
driver ... 5
error code ..16
error message ..37
events ...39
Execute ...40
exporting functions................................... 8
exposure.. 31, 32
focus ...41
frame buffer 12, 17, 27, 28, 39
frame rate.. 21, 42
function groups.......................................11
GetChannelCount29
GetContinuous ..30
GetDeviceCount18
GetDeviceName15
GetDriverName................................. 14, 19
GetDriverProvider.............................. 14, 19
GetDriverVersion............................... 14, 20
GetExposureMode32
GetExposureTime31
GetFrameInfo ...16
GetMaxFrameRate...................................21
GetMinTimeout21
GetPixelAspect..27
GetROI ..24
GetSampleFormat27

GetTriggerTimeout33
hardware configuration37
hot loading....................................... 5, 6, 8
initialize...15
input channel ...29
installing..9
integration ...31
IsOsSupported..22
manual installation....................................9
memory layout ...9
monochrome ..16
multiple devices.................................. 8, 18
OpenDriver ..15
programming languages.............................8
ReadBuffer....................................... 14, 28
ReadFrame ..17
ReadROI..24
ReadTTL ..36
recommendations14
region of interest23
registry ..9, 37, 42
ROI...23
sample format ..27
SelectChannel ..29
SelectDevice ..18
SelectedChannel29
SelectedDevice18
sequence capture.............................. 34, 35
SetContinuous ..30
SetExposureMode32
SetExposureTime31
SetROI ..23
SetTriggerTimeout32
ShowConfigForm............................... 14, 37
ShowCustomForm...................................38
shutdown...15
Snapshot ...17
streaming .. 30, 41
support ...6
terminology..5
timeout ...21
TRect ..8
triggered exposure32
TTL lines..36
TVideoEvent ...8
video architecture5
video frame...................................... 16, 17
VPascal.. 5, 40
WriteBuffer ..28
WriteTTL..36

V++ Video Driver Writer's Guide 43

	1. Introduction
	Before You Start
	Terminology
	Support

	2. Driver Overview
	Concepts
	Supporting Multiple Devices
	Programming Languages
	Data Types
	Hot Loading
	Memory Layout
	Registry Settings
	Loading and Installing a Driver
	Modifications

	3. Function Categories
	4. Basic Functions
	5. System Functions
	6. Driver Information
	7. Performance Information
	8. Region of Interest
	9. Asynchronous Capture
	10. Frame Buffer Functions
	11. Input Channels
	12. Continuous Capture
	13. Integration
	14. Exposure Modes
	15. Sequences
	16. Digital I/O Lines
	17. User Interface Support
	18. Command Interface
	Appendix A: Focus Issues
	Appendix B: V++ Registry Settings
	Index

